
Using Software Process to Support Learning Software
Organizations

Scott Henninger
Department of Computer Science & Engineering

University of Nebraska-Lincoln
scotth@cse.unl.edu

ABSTRACT

Software process improvement efforts are faced
with a number of difficulties. The first is defining a
uniform process in the face of diverse software
development needs. Solutions to this problem often
involve specifying the process at an abstract level,
causing secondary problems, such as methodologies
that are too watered down to be useful and the
difficulty of obtaining feedback from development
efforts. In this paper, an approach is presented that
couples rule-based technology and a case-based
architecture to capture detailed information and
support diverse process definitions. Emphasis is
placed not only on tailoring software processes to
meet the needs of specific development efforts, but
to also deliver information on tools, techniques, and
existing artifacts throughout the process. Efforts are
currently underway to investigate applying this
approach to the ISC Software Methodology at
NASA Goddard.

1 Diversity in Software Development
Processes

Software development is a complex, knowledge
intensive activity involving many types of
knowledge [Henninger et al. 1995]. Contrary to the
traditional emphasis on applying universally
applicable techniques, much of this knowledge is
locally defined and practiced. Industry standards,
such as ISO 9000 and the Capability Maturity
Model are necessary to begin creating standard
processes that can be measured and evaluated. But
the universal nature of these standards naturally
migrate toward general and highly abstract
procedures and techniques. Specifying, for
example, that configuration management practices
must be used covers a very wide range of
techniques, and do little to help people understand

how configuration management should be practiced
for creating client-server vs. single machine
applications or how it should be applied to
distributed development teams.

The general problem facing these standards is the
diversity of modern software development, which
must accommodate increasingly diverse application
domains reaching nearly every aspect of human life.
Even at the most abstract levels of software process,
diverse practices have evolved to address the
different concerns of industries and organizations
involved in creating various kinds of software
[Lindvall, Rus 2000].

Most standards, such as the CMM, restrict
themselves to defining the kinds of activities that
should be practiced, leaving the actual definition of
the activities to the organization. This allows local
knowledge and practices to have influence over the
standards activities. But diversity within
organizations [Johnson, Brodman 2000; Schultz et
al. 2000] soon becomes complex, causing the
procedures to be defined at an abstract level that
once again impedes the ability to specify actual
practices. Development efforts are left to “tailor”
the process to project needs, usually with little or no
guidelines on the parameters for acceptable
variations or how the tailoring should be
accomplished.

Methodologies, tools, and techniques are needed
that can accommodate this natural diversity while
retaining a level of discipline and standard. In
addition, process standards should be used to
disseminate best practices that can be adopted and
used to guide individual development projects.

1.1 An Extensible Software Process

The approach described in this paper begins with the
following guiding principles:

2

1) Software processes must be flexible enough to
not interfere with adept local practices while
incorporating enough discipline to ensure
acceptable project performance.

2) High-level process standards must be supported
with specific activities and examples
representing local development practices.

3) Software development efforts must be provided
with activities that are as specific to the
project’s needs as possible.

4) Practices must be allowed to evolve in a
disciplined manner to reflect changing software
needs and technology advances.

These principles are addressed through a
methodology and tool support that captures project
experiences within a software process framework.
This information is then disseminated to subsequent
development efforts to provide experience-based
knowledge of development issues encountered
within the organization. Deviations from the
standard process are used to identify where the
process needs refinement or additional options based
on project requirements or new technologies.

The overall approach is referred to as an
“organizational learning” [Levitt, March 1988;
Senge 1990] process because a formally defined
process is used as a baseline to assess the adequacy
of the process. As feedback from project
experiences is encountered, new procedures are
created to address issues inadequately handled by
the current process.

As cases accumulate and deviations refine the
process, the knowledge contained in the repository
becomes increasingly tailored to the kinds of design
problems that frequently occur in the organization.
This information can be analyzed and generalized in
a domain analysis [Arango 1989] or software
factory [Basili et al. 1992] setting to create
generalized knowledge with broader applicability
than the context-specific cases. This further refines
the process while assuring that it evolves to fit the
needs of the organization.

2 Building an Organizational Repository of
Experiences

Over the past few years, we have been investigating
how tools can be used to support an organizational
learning approach for software development.
Through evaluation of these efforts [Henninger

1996, 1997; Henninger et al. 1995], we have come
to the fairly obvious conclusion that the problem is
not one of providing better search engines to
disseminate static text or placing standards on the
Web, but one of designing work practices to fit the
organizational learning approach.

This led us to begin investigating how software
process can be used as a driving force for collecting
and disseminating software development
knowledge. In this regard, we have combined an
organizational learning meta-process with a rule-
based software process engine to create a tool that
provides decision support for tailoring software
processes to the needs of individual development
efforts. The approach is demonstrated through an
exploratory prototype named BORE (Building an
Organizational Repository of Experiences)
[Henninger 1997], coupled with a methodology to
support tailoring the software process to the
characteristics of individual development efforts and
refining the process when projects need to deviate
from current practices.

2.1 Defining a Flexible Software Process

The methodology, depicted in Figure 1, uses a rule-
based system to apply current knowledge to
software development efforts and a review process
to learn and extend from project experiences.
Software development efforts tailor an existing
development process, depicted by the “Standard
Process” in Figure 1, to their current needs through
choices on project options. The result is a process
that is tailored to the individual needs of the project.

This process is then subjected to a review in which
choices are evaluated and discussed. Where the
current process fails to provide sufficient guidance,
alternatives are discussed and adopted by the
project. Once the process is enacted, the repository
is modified in two ways. First, each process is
assigned to a project as a case, meaning that the
project is free to adopt the process to their own
needs and document their progress. For example, a
process stating that the selection criteria for
choosing COTS software needs to be determined
would have cases for each project stating the
specific criteria used by the project. In this way,
projects can easily adopt an existing process by
choosing the case most closely matching their needs
and refining it appropriately.

3

Second, deviations to the software process can be
formally expressed by creating a new set of
activities and rules for matching the activities to
project requirements. For example, suppose a
project using Java applets determines that a new step
is needed to address cross-platform and cross-
browser needs. A new activity would be created
along with a rule stating that when Java applet
technology is used the activity is required.
Subsequent projects will then benefit from this new
knowledge, thus preventing problems with re-
discovering that this is indeed a risk for systems
using this technology.

The repository therefore serves not only as a means
to disseminate design knowledge, but also helps an
organization learn what does and does not work for
their development context. This is where we
distinguish between organizational memory systems
that many have advocated [Terveen et al. 1995;
Walsh, Ungson 1991] and our notion of
organizational learning, where the emphasis is
placed on using the standard as a means to learn
from previous experiences and improve where
needed.

2.2 Tools Supporting Flexible Processes

Because knowledge of software processes and when
they should be used are being created dynamically
through project experiences, tool support is
necessary to disseminate process information. We
have been investigating these issues through the

BORE prototype, a Web-enabled application using a
three tiered architecture consisting of HTML,
Javascript and Java AWT for rendering the
interface, Java for application logic and JDBC
access, and relational database back-end. It can be
accessed through a Web browser (must use
Navigator 3.1 or greater and both Java and
Javascript enabled) at http://cse-
ferg41.unl.edu/bore.html (log in as ‘guest’).1

The general objective of BORE is to provide a
single point of reference for documenting a project’s
software process. Instead of documenting the
process in static text documents, often referred to as
the Standard Development Methodology (SDM),
process activities are maintained in a database and
assigned to projects when applicable. Each project
therefore sees, and is responsible for, that portion of
the standard that applies to the project. BORE
supports this through an interface that allows
projects to tailor the process to their needs and view
the resulting customized process.

The main interfaces for BORE are shown in Figure
2. The Case Manager, shown to the left in Figure 2,
displays a hierarchical arrangement of cases that
define the activities in a project’s development
process. In the figure, a project named “Goddard
ISC demo” has been chosen from the list of
resources in the drop-down menu that displays
projects. Each activity contains project-specific

1 BORE does not currently run on Internet Explorer.

Review process

Elicit project
characteristics

Domain Cases

R equi re ments
Def in i tion

Busi ness
M odeli ng

(BAA1.1.2)

P ro je c t
I n iti ati on

Funct iona l
D e sign

(BAA 1.2, BSI

1)

Le ga cy Impac t
Anal ysi s

Func t iona l
Des ign

BORE
Repository

Customized
project
activities

Modified activities

AddGuidel ine 2.4. 1.1.1:Di splaypr oductl ogoatt he
t opof t hescreen

AddG uideli ne 2.4. 1.1.2. 2:
Placel ogoi nupper leftcor ner fram eonscr een.

RemoveQ4&

In-House

Vertical
Square

ÒANDÓ
AddGuidel i ne2. 4.1.1 .2..3:
Pl acel ogoin hor i zont alfr ameacr ossbotto mor topof scr een

AddGui deli ne2. 4.1. 1.2.4:Pl acelogoi nver t ical f rame
al onglef tsi deof screen

Add Guideli ne 2.4.1.1.3:
Scalel ogo dow nto the
s izeof a"smal l"log o.&AddG uideli ne 2.4. 1.1.2. 2:
Placel ogoi nupper left
cor ner fra meonscr een

Add Guid el ine2 .4. 1. 1.2.1 :DevelopaNOFRAMESopti onfor theap pli cat ion

AddGuideli ne2. 4.1.1.2:
UseHTMLf rame s to
displaypr oductlo go.

Q 4: What is the layo ut ofth eproduct logo tob e
ut ilized?

Q3:What is thes izeo f the
product logo tobeutil ized?

Q2 :I s it important to deve lop
f or br owser s that don ot suppor t
f rames?

Q1: What is theintendeddi str i-buti onof t heapp licat ion? Exte rnal C ustomers

Domain
Rules

activi ty
modification

cases

External sources
of process

modification

rule
modification

Figure 1: A methodology for capturing and disseminating software development knowledge.

4

information as shown in the window to the right in
the figure, which was obtained by double-clicking
on the activity named “Conduct a Systems
Requirement Review (SRR)” in the project
hierarchy.

Bore Domains. Bore divides its repository into
domains. Domains are independent knowledge
realms that consist of a set of domain activities and
domain rules that define the context under which a
process is applicable to a development effort.
Currently, projects belong to a single domain, which
is chosen when a project is created in BORE. All
subsequent project activities will use the cases and
rules defined for that domain. This supports
scalability and allows organizations to partition
development activities into domains that mirror
diverse environments or product lines.

Domain activities define the individual activities
and relationships to other activities for the entire
domain. When an activity is assigned to a project,
its contents are copied into the project’s project
hierarchy. In case-based terminology, it becomes a
case, meaning it holds context-specific information
related to the general principle. For our purposes,
the project has been assigned a specific activity, so
the case is often referred to as the activity and the
general principle corresponds to the domain activity.

Examples of activities include the standard process
elements seen in process improvement standards,
such as conducting reviews, planning and

documenting test procedures, planning activities,
etc. In addition, the BORE methodology allows
these procedures to be defined at any desired level.
An organization that wants a specific look-and-feel
to their product could, for example, specify that a
standard login screen be used for their applications.
The tailoring process described here make this kind
of detailed process possible because each project
need only be concerned with the activities that
match their specific needs.

Domain Rules are used to tailor the overall
development process to the specific needs of
different projects by matching domain activities to a
specific project. As shown in Figure 3, this is
accomplished through a question-answer session in
the “Options” tab of an activity. The figure shows a
set of questions that define some project tailoring
factors. The answers define project requirements
that will determine which activities will be assigned
to the project.

For example, a recent effort to define an ISO 9000
compliant software process at NASA Goddard
found that a System Requirements Review (SRR) is
needed when the software is mission critical and the
schedule is not aggressive. But if the schedule is
aggressive, the SRR should be combined with a
System Concept Review. These tailoring factors are
easily programmed in BORE by creating rules
stating the conditions for the different reviews.
After answering the questions shown in Figure 3,
BORE will add the proper review (and other
activities) that have been designed into the process
and encoded as rules.

Figure 3: Project Options.

Figure 2: BORE Case Manager and a case.

5

Options can also be created that help break a process
down into constituent activities. For example, a
process specifying how COTS components should
be evaluated may begin with activities for
evaluating current COTS systems. Depending on
whether candidates are found, more activities may
be assigned to the project. This could be addressed
in BORE by having one activity with options that
specify further activities depending on the nature of
the evaluated COTS. BORE is designed so that any
activity can have options associated with it, which
allows projects to answer the questions as they are
addressed instead of at the beginning of a project.

Internally, BORE uses a simple forward chaining
production system implemented using an SQL
database to represent rules. Rules consist of a set of
preconditions and actions. Preconditions are
represented by question/answer pairs. When all
preconditions evaluate to true, the rule “fires,”
causing a set of defined actions to be executed. The
core actions in BORE can remove questions from
the question stack (displayed in the Options window
of a case, see Figure 3), add a question to the
question stack, or add a case to a project. In
addition, new action types can be created by
attaching a Java method to the action. BORE
supports rule backtracking that allows rule actions to
be undone when a precondition changes in such a
way that rule should no longer be fired. A rule
editor has been implemented to facilitate the
creation of new rules as part of the process shown in
Figure 1.

3 Related Work
Thus far, most research on software processes has
focused on defining the process. Approaches
include high-level strategies such as the waterfall,
spiral, and prototyping models, methods for
combining process elements [Osterweil 1987], and
universal process models such as the CMM [Paulk et
al. 1993] or ISO 9000. A significant contribution of
this work is to define not only the process, but how
the process evolves with the changing needs of the
development organization, a phenomena that
process technology is only beginning to explore
[Cugola 1998]. BORE domains are seen as a “seed”
that evolves as it is used [Fischer et al. 1994]. In
addition, the process can be defined at many levels
of detail, allowing projects to adopt the process at an
appropriate level of detail. In essence, this is more

of a form of knowledge editing [Terveen, Wroblewski
1990] than process programming [Curtis et al. 1992;
Osterweil 1987], which is more concerned with
integrating tools and documents to automate
development activities, although elements of both
issues are present.

These concepts have their predecessors, particularly
in the form of software factories [Basili et al. 1992;
Basili, Rombach 1991, 1988] and process
programming [Curtis et al. 1992; Osterweil 1987] ,
but little in the way has been done to create
interfaces and CASE tools to support these concepts.
The QIP approach in TAME [Basili, Rombach
1988] is another maturity-based framework that is
designed to develop and package experiences to
facilitate reuse within the organization. Basili et al.
advocate the use of metrics and quantifiable goals to
create an improvement strategy and address
controlling the content, structure and validity of the
knowledge [Basili et al. 1992]. While these metrics
will become necessary for an organizational learning
approach to succeed, our focus and contribution thus
far has been to provide a support environment for
this kind of approach in a framework that allows for
decisions support for choosing appropriate processes
and evolution of processes to continuously improve
the organization’s best practices.

This approach also has some roots in the design
rationale field [Conklin, Yakemovic 1991; Fischer et al.
1992; Lee 1993; Maclean et al. 1991; Moran, Carroll
1996]. Similar to the organizational learning
approach, the motive for capturing design rationale
is to avoid repeating common pitfalls or re-
discussion of design decisions by describing the
alternatives debated and decisions made for a given
effort. Many schemes, from the simple of
Procedural Hierarchy of Issue structures [Conklin,
Yakemovic 1991; Fischer et al. 1992] to more complex
structures designed to capture logical relationships
for computation [Lee 1993] have been devised. All
have the same basic structure of a set of
hierarchically arranged questions posed to flesh out
issues. Alternatives and rationale for the
alternatives can be attached to the questions to
document discussion paths.

The organizational learning approach also
incorporates elements of organizational memory and
a formalized approach to supporting a learning
organization with information technology. The
Designer Assistant project at AT&T created an

6

organizational memory system whose use became
part of the design review process as a way of
ensuring conformance to the usage of a specific
piece of complex functionality in a large switching
system [Terveen et al. 1995]. In this setting, the
design process was modified to include a trace of
the Designer Assistant session as part of a design
document. The appropriateness of the designer’s
choices and adequacy of the advice given by
Designer Assistant are discussed during software
design reviews. If the advice is found to be lacking,
designers begin a formal change process to update
the knowledge. Utilizing a combination of existing
and new organizational processes to place use of
Designer Assistant into development practices
ensures that the knowledge will evolve with the
organization. The observation that “technology and
organizational processes are mutual, complementary
resources” [Terveen et al. 1995] has served as a
guiding principle for this work.

4 Conclusions and Future Work
The general goal of this approach is to create a
software process standard that is flexible enough to
split the gap between overly-restrictive development
methodologies and ad-hoc software development
practices and incorporate feedback to refine the
process to fit the needs of software development
organizations as they evolve. Currently, the
industry standard is to define a SDM and then
ignore it in its entirety or follow it enough to justify
it to certification authorities. We wish to turn these
procedures and software processes in general into
resources that truly supports the development
process as it is actually practiced, while adding
necessary degrees of formal procedures to ensure
high-quality products. This involves not only
defining a process, but also using feedback from
projects to refine and improve its procedures. These
concepts have their predecessors, particularly in the
form of software factories [Basili et al. 1992; Basili,
Rombach 1991, 1988] and process programming
[Curtis et al. 1992; Osterweil 1987], but little in the
way has been done to create interfaces and CASE
tools to support these concepts. This work attempts
to fill this gap with case-based decision support for
defining complex and specific processes that are
managed by allowing projects to tailor the process to
their individual needs.

Early BORE work, which largely focused on
repository technology and search engines, was
evaluated in pilot projects and using student
projects. These studies demonstrated that repository
technology alone was insufficient to successfully
institute an organizational learning process. Work
activities need to be designed that integrate both use
of the tool and its continuous updating and
improvement. The work described here attempts to
address these issues through a process that supports
learning from project experiences. Similar research
has shown that such a system will be used by
development personnel, provided it contains
relevant, useful and up-to-date information [Terveen
et al. 1995]. This mandates a strong tie between
technology and process in which using the
technology must become part of routine work
activities. Such an approach will succeed to the
extent that people are rewarded in the short term for
their efforts.

We are currently investigating the feasibility of
using BORE to support the ISC Software
Methodology currently being developed at NASA
Goddard. Current efforts at defining this process
found that there was a strong need to tailor the
process depending on a number of high-level
factors, such as mission criticality, the size of the
software team, aggressiveness of the schedule, and
whether the development effort is for new software
or maintaining existing software. These factors are
currently being documented in a matrix with if-then
statements to describe other factors, such as whether
high-level requirements have been provided or if
COTS/GOTS are being used [Schultz et al. 2000].
Feedback from walkthrough meetings have
indicated that project leads understand the need for
tailoring the process, but have some problems with
the matrix representation. BORE is seen as a
possible solution to this problem and we are
planning on creating a BORE-based prototype if the
process to explore how this can be accomplished.

REFERENCES

[Arango 1989] Arango, G., "Domain Analysis: From Art
Form to Engineering Discipline." in Fifth
International Workshop on Software
Specification and Design, (Pittsburgh, PA,
1989), ACM, New York, 152-159.

[Basili et al. 1992] Basili, V.R., Caldiera, G., Cantone,
G., "A Reference Architecture for the

7

Component Factory." ACM Transactions on
Software Engineering and Methodology, 1 (1).
53-80.

[Basili, Rombach 1991] Basili, V.R., Rombach, H.D.,
"Support for Comprehensive Reuse." Software
Engineering Journal. 303-316.

[Basili, Rombach 1988] Basili, V.R., Rombach, H.D.,
"The TAME Project: Towards Improvement-
Oriented Software Environments." IEEE
Transactions on Software Engineering , 14 (6).
758-773.

[Conklin, Yakemovic 1991] Conklin, E.J., Yakemovic,
K., "A Process-Oriented Approach to Design
Rationale." Human-Computer Interaction, 6 (3-
4). 357-391.

[Cugola 1998] Cugola, G., "Tolerating Deviations in
Process Support Systems via Flexible Enactment
of Process Models." IEEE Transactions on
Software Engineering, 24 (11). 982-1000.

[Curtis et al. 1992] Curtis, B., Kellner, M.I., Over, J.,
"Process Modeling." Communications of the
ACM, 35 (9). 75-90.

[Fischer et al. 1992] Fischer, G., Grudin, J., Lemke, A.,
McCall, R., Ostwald, J., Reeves, B., Shipman,
F., "Supporting Indirect Collaborative Design
With Integrated Knowledge-Based Design
Environments." Human-Computer Interaction,
7. 281-314.

[Fischer et al. 1994] Fischer, G., McCall, R., Ostwald, J.,
Reeves, B., Shipman, F., "Seeding, Evolutionary
Growth and Reseeding: Supporting the
Incremental Development of Design
Environments." in Proc. Human Factors in
Computing Systems (CHI '94), (Boston, MA,
1994), ACM, New York, 292-298.

[Henninger 1996] Henninger, S., "Building an
Organization-Specific Infrastructure to Support
CASE Tools." Journal of Automated Software
Engineering, 3 (3/4). 239-259.

[Henninger 1997] Henninger, S., "Case-Based
Knowledge Management Tools for Software
Development." Journal of Automated Software
Engineering, 4 (1). 319-340.

[Henninger et al. 1995] Henninger, S., Lappala, K.,
Raghavendran, A., "An Organizational Learning
Approach to Domain Analysis." in Seventeenth
International Conference on Software
Engineering, (Seattle, WA, 1995), ACM Press,
New York, 95-104.

[Johnson, Brodman 2000] Johnson, D.L., Brodman, J.G.,
"Applying CMM Project Planning Practices to
Diverse Environments." IEEE Software, 17 (4).
40-47.

[Lee 1993] Lee, J., "Design Rationale Capture and Use."
AI Magazine, 14 (2). 24-26.

[Levitt, March 1988] Levitt, B., March, J.G.,
"Organizational Learning." Annual Review of
Sociology, 14. 319-340.

[Lindvall, Rus 2000] Lindvall, M., Rus, I., "Process
Diversity in Software Development." IEEE
Software, 17 (4). 14-18.

[Maclean et al. 1991] Maclean, A., Bellotti, V., Young,
R., Moran, T., "Questions, Options, and Criteria :
Elements of Design Space Analysis." Human-
Computer Interaction, 6 (3-4). 201-251.

[Moran, Carroll 1996] Moran, T., Carroll, J. (eds.).
Design Rationale: Concepts, Techniques, and
Use. Lawrence Erlbaum Associates, Hillsdale,
NJ, 1996.

[Osterweil 1987] Osterweil, L., "Software Processes are
Software Too." in Ninth International
Conference on Software Engineering ,
(Monterey, CA, 1987), ACM, IEEE, Los
Alamitos, CA, 2-13.

[Paulk et al. 1993] Paulk, M.C., Curtis, B., Chrissis, M.,
Weber, C.V., "Capability Maturity Model,
Version 1.1." IEEE Software, 10 (4). 18-27.

[Schultz et al. 2000] Schultz, D., Bachman, J., Landis,
L., Stark, M., Meyers, G., Godfrey, S., Tilley,
M., "A Matrix Approach to Software Process
Definition." in 25th Annual Software
Engineering Workshop , (2000).

[Senge 1990] Senge, P. The Fifth Discipline: The Art
and Practice of the Learning Organization.
Currency Doubleday, New York, 1990.

[Terveen, Wroblewski 1990] Terveen, L., Wroblewski,
D., "A Collaborative Interface for Browsing and
Editing Large Knowledge Bases." in National
Conference of the American Association for AI,
(Boston, MA, 1990), AAAI, 491-496.

[Terveen et al. 1995] Terveen, L.G., Selfridge, P.G.,
Long, M.D., "Living Design Memory’ -
Framework, Implementation, Lessons Learned."
Human-Computer Interaction, 10 (1). 1-37.

[Walsh, Ungson 1991] Walsh, J.P., Ungson, G.R.,
"Organizational Memory." Academy of
Management Review, 16 (1). 57-91.

